

Welcome

Paschim Banga POULTRY MELA

Technical Seminar 16th February, 2018

LAYER NUTRITION Field Challenges & Solution

Venkys India Limited

Dr. S. S. Nadgauda

M. V. Sc. Poultry Science Gold Medal

Present Scenario - Major challenges

	Uniformity
	Egg breakage / Shell quality
	Egg Size
	Poor Premixing
Active site	Enzymes
	Bio - Security

DROONZUTI

Present Scenario - Nutritional Challenges

Venky's

Introduction

Respect the Basics to be Successful

Important aspects of the Layer Farm

Venky's

Brooding & Growing

Brooding & Growing Shed – Cleaning & Disinfection

Maintenance of good Bio-Security & Hygiene at all Times

Optimum brooding environment

Success in the Laying shed is dependant upon the success in the Brooding & Growing

Important Nutritional Goals in Feeding the Laying Hens

Organ Development – 5 to 6 weeks

Body Frame achieved - 12 to 14 weeks

Sexual Maturity – correct Body Weight & Body Composition

Layers must be in positive energy balance at peak production. Energy reserve occurs during growing period

FLOCK UNIFORMITY

Maintain steady state throughout egg production

Nutrition – what is important??

Venky

Nutrition – Energy Balance

Laying hens eat to satisfy their energy needs and they do it with great precision within certain dietary energy limits.

Nutrition – Phase - I

Venky's

Nutrition – Phase – II, III

Decrease the energy

- Sustain high egg production
- Maintain fat & breast muscles

Phase – II, III Feed should be....

- Low in protein to maintain egg size
- High Calcium & low in Phosphorus Maintain egg shell quality

Make gradual changes in feed instead of immediate changes

Formulate as per feed consumption

Balanced Nutrition

Uniformity

V H GROUP

Uniformity – Reasons for Poor Uniformity

Egg Shell Quality

Egg Shell Quality

Egg Shell quality greatly dependant on skeletal condition of the layer

Hens with soft bones produce thin egg shells

Low ca in feed will show results after 4 days of feeding.

High level of Available Phosphorus in feed.

DRSSN2017

19

Practical Problems in Layer & Pullet Nutrition - H. John Kuhl Jr. Ph. D

Eggshells Quality

Eggshells quality

Importance of calcium source

Venky's

Calcium Carbonate	Particle Size (mm)	Relative Solubility (%)
Extra Fine	Less than -0.2	100
Fine	0.2 – 0.5	85
Medium	0.6 - 1.2	70
Coarse	1.3 – 2.0	55
Lagre	2.0 - 5.0	30
Oyster Shell	2.0-8.0	30

Lower the solubility greater the retention	reater the retention in the digestive tract	
Ideal for growing chickens 0.3 - 0.4 mm	DRSSN2017	

Venky's

Medullar bone formation

DRSSN2017

Whitehead, 2004

Loss of bone mass: medullar and structural

DRSSN2017

Whitehead, 2004

Loss of bone mass

Decrease in egg production immediately after peak

Egg and eggshell formation

eggshell is formed at night

First 6 Hrs - No Shell Deposition, 6 to 12 Hr – 400 mg, 12 to 18 Hrs – 800 mg, Last 6 Hrs – 500 mg (Slow Deposition)²⁷

Suggestions for good eggshell quality

Source of calcium in the diet

• 30 - 35 %	- fine limestone	- (0.2 - 0.5 mm)
• 65 - 70 %	- large limestone	- (2.0 - 5.0 mm)

Prevent excess available phosphorus from 40 to 60 (0.30 - 0.35%) and after 60 weeks of age (0.25%)

• Limit the use of medullar bone calcium

Reduce amino acid levels, especially methionine in the diet (280 mg/day) after 60 weeks of age.

Decrease egg size 1-1.5 g

Calcium Intake decline with age2but Calcium output does not.

Suggestions for good eggshell quality

Use of 25(OH)D3 or 1 alpha (OH)D3 as source of D3

- Increase retention of calcium
- Decrease mortality

Prevent the use of salty water (250 mg salt/liter)

• Limit the provision of carbonate in the uterus

Adequate levels of manganese (membranes and organic matrix) and zinc (carbonic anhydrase)

• Use organic minerals (chelated with amino acid)

Maintain the electrolyte balance

Suggestions for good eggshell quality

Management and Equipment

- Hens density
- Cage design
- Frequency of egg collection
- Sudden changes in light
- Transport and classification

Diseases prevention

- Infectious Bronchitis (IB)
- Egg drop syndrome (EDS)
- Newcastle Disease (ND)

Egg Size is affected by

- Body weight at sexual maturity
- Environmental conditions
- Mycotoxins
- Nutrition :
 - Linoleic Acid
 - Added fat/Oil
 - Amino Acids

Egg Size - Effect of Body Weight

Age In Week	Body Weight (Gm)	Egg Weight (Gm)
18	1.220	38.00
19	1.280	41.50
20	1.330	45.00
21	1.360	48.00
22	1.380	51.50

BV300L Manual

Dr.SSN Sep 2017

Egg Size — Effect of Environmental Temperature

	27.5 ° C	29.2 º C	30.8 ° C
Daily Feed Cons (g)	114	102	101
Body Weight (Kg)	1.59	1.44	1.40
Small Eggs (< 60 gm)	32.30 %	48.40 %	56.30 %

V H GROUP

Egg Size — Effect of Aflatoxin

Age In Week	Egg Weight 0 ppb AFB	Egg Weight 200 ppb AFB
22	51.50 g	45.80 g
26	55.50 g	49.80 g
30	57.20 g	50.50 g
32	57.60 g	54.60 g
22 - 32	55.45 g	50.175 g
Difference		5.275 g

Toxicity of **Aflatoxin B1** prevent mobilization of Lipids from Liver to the Ovary. **Ochratoxin – T-2 - Toxin**

Dr.SSN Sep 2017 Based on - Azzam and Gabal 1998 Avian Pathology 27:570-577

Egg size & Methionine

Folic acid/betaine/choline/B12 'spare' methionine for production by increasing reconversion

Cysteine cannot be converted to methionine, but methionine can be converted to cysteine

Both methionine & methionine + cysteine levels in feed are important

Methionine requirement must be fulfilled first

More methionine = more production

Egg Size – Linoleic Acid & fat

Maximum response in egg weight to linoleic acid is at level of 1.5% in the diet.

Oil or fat addition in young layer diets increases about 2.5 g the egg weight.

Maximum response in egg weight in the first phase of production with the supplementation of 2 a 4 % of added fat; being vegetable oils more effective than animal fat

Conclusions and recommendations

Venky's

Premixing

Some observations - Feed Mill

Venky's

Feed Delivery

Ve-ku's

Why Premixing?

The requirement of micro ingredients such as vitamins, minerals, feed additives in the feed in very small quantities

◀

If these micro-ingredients are added directly to the mixer -

not getting properly disbursed in feed.

To avoid this, micro-ingredients are first premixed separately in an efficient small batch mixer to form a premix and again mixed with another feed ingredient to form a large portion of premix.

The premix is added to the main batch mixer to achieve uniform disbursement.

How to select a Best Premix

Convenience of handling and storage

Reduce the number of ingredients

Increase batching efficiency and reduce batching errors

Optimize micro-ingredient particle distribution in the feed

Ensures homogeneous mixing

Premixing at field

Advantages of using Premixes

Considering matrix values will save feed cost

But matrix values must be reliable & proven

Feed Cost Saving with Matrix				
Sr	Rs/Kg	Ingredients	with Normal Phytase	With New Gen Phytase
1	13.00	Maize	58.480	55.415
2	12.50	Broken Rice	3.880	5.000
3	11.80	Deoiled Rice Bran		4.000
4	36.00	Deoiled Soy	15.000	13.000
5	28.00	GNE	5.000	5.000
6	18.00	Sunflower cake	5.000	5.000
7	1.50	Marble Grit	8.000	8.000
8	3.00	Lime Stone Powder.	2.000	2.200
9	37.00	DCP	1.300	1.050
10	120.00	L-Lysine	0.140	0.165
11	270.00	D.L.Methionine 98%	0.180	0.180
12	90.00	Choline Chloride 60%	0.150	0.150
13	70.00	Traceminerals	0.100	0.100
14	400.00	Vitamin Premix	0.050	0.050
15	5.00	Salt Pure	0.250	0.230
16	33.00	SBC Pure	0.160	0.150
17	130.00	Normal Phytase	0.010	
18	450.00	New Generation Phytase		0.010
19	70.00	Livertonic	0.050	0.050
20	85.00	Toxin Binder	0.100	0.100
21	450.00	Probiotic	0.050	0.050
22	130.00	Acidifier	0.100	0.100
		Total	100.000	100.000
		Rate	18.06	17.53

Nutrients	with Normal Phytase	With New Gen Phytase
ME Kcal	2616.22	2615.32
C.P	15.99	15.91
EE	3.064	2.994
CF	4.041	4.445
A/A	2.605	2.936
Са	3.815	3.806
Av.P	0.432	0.435
Lysine	0.724	0.724
Met	0.406	0.406
Cystine	0.213	0.218
M+C	0.623	0.625
Thr.	0.472	0.466
Trypt	0.151	0.148
Arginine	1.028	1.009
Isoleu	0.561	0.534
Leu	1.204	1.165
Valine	0.658	0.654
Histidin	0.381	0.366
Phen	0.703	0.672
Na	0.188	0.192
Cl	0.210	0.200
K	0.636	0.637
Len.Acid	1.324	1.280
Choline	1.899	1.895
Ca:Ap	8.84	8.75
Lysine to CP %	4.53	4.55
Lysine to Met %	56.11	56.09
Lysine to M+C	86.02	86.37
Lysine to Threonine	65.18	64.37
Lysine to Tryptophan	20.90	20.38
Lysine to Aginine	141.95	139.41
DEB mEq=	185.52	190.09
Consumption (g)	105	105

Use Enzymes

Venky

Geographical Location of WB makes it more prone to Infections

Bio – Security at Farms

Disease Control Strategies

Mortality Disposal??

Culls/Ready Bird Vehicles

Vaccine/Diluent Bottle disposal

Clean secured premises

Potential Entry Point of Infection

Vehicle Shower

Venky's

Mortality Disposal Pit

Always remember !!

Disease Prevention

Doesn't Cost ...

It Pays

Take home message....

Laying hens will continue to produce more number of eggs with extended laying cycle

Challenge to maintain good eggshell quality and egg size through – Genetics & Nutrition

Layer nutrition has a greater role ahead

Bio-Security needs to be maintained at all times.

Thank you for your attention

Venky's

