Changing dimensions of Fowl Adenovirus in India and the concepts to control

Dr. Prakash B. Reddy

DGM-Technical Services Ventri Biologicals, Division Of VHPL Ideal Balanced Diet Rich History of BV300 and VenCobb 400/430

Genetics

Nutrition

Husbandry

Changing Dimensions of "Poultry Health"

Animal Welfare

V H GROUP

Doesn't happen by accident

Disease management

Most Vaccinated Species in the World

Changing Poultry Disease Threats in India

Challenges To The Poultry Industry For Control

Disease complexes

- Respiratory diseases
- Immunosuppressive diseases

Complex diversity of RNA viruses

- Segmented RNA Viruses- Avian influenza, Reoviruses
- Single stranded RNA viruses- IBV, NDV
- Double standed segmented RNA IBDV

Vertically transmitted diseases

- Viruses: ALV, Adenovirus, Astrovirus, AE, CAV, Reovirus,
- Bacteria: Mycoplasma, Salmonella, ORT

Indiscriminate use of Live vaccines

Complex Vaccination schedules

• Vaccines should be used as prophylactic not therapeutic

Complex Respiratory Diseases

Fowl Adenovirus Infections

A Primary Pathogen in Chickens?

A Subclinical infection?

- Adenovirus were first recovered from explants of human <u>adeno</u>id tissue (adeno gland).
- Adenoviruses infect a wide variety of mammals and birds and replicate in endothelial cells, e.g. kidney, liver, respiratory mucosa.
- Most disease self-limiting, lasts ~ 2 weeks
- Virus Characteristics:
 - non-enveloped, Icosahedral
 - Linear dsDNA of 30-38 kbp

Classification of Fowl adenovirus serotypes (1-12)

S pecies	Serotype number			Type strain		
	Europe	USA	ΙΟΤΛ	Europe	USA	ICTV
Α	1	I	1	CELO	QBV/Phelps	112,Ote,H1,CELO,QBV
В	5	8	5	340	M2/TIPTON	TR-22,340,TIPTON,M2
С	4	4	4	KR5	J2	506,H2, <mark>K31</mark> ,61,J2, <mark>KR5,</mark>
	11	10	10	C2B	C2B	MII,CFA20,SA2, <mark>C2B</mark>
D	2	2	2	GAL-I	P7	<mark>685</mark> ,SR-48,H3,GAL-1,P7
	3	3	3	SR49	-	<mark>75</mark> ,H5, <mark>SR49</mark>
	10	9	9	A2	A2	90,CFA19,A2
	12	12	11	380	-	<mark>UF-71</mark> ,380
E	6	5	6	CRI19	-	168, <mark>CR119</mark>
	7	11	7	TR36/XII	XII	<mark>YR-36</mark> ,122, <mark>X-11</mark>
	8	6	8 a	TR59	Т8	<mark>58</mark> ,CFA40, <mark>TR-59</mark> ,T-8
	9	7	8b	764	B3	VRI-33, <mark>764</mark> ,B3

VIIIth Report of the International Committee on Taxonomy of Viruses

V H GROUP

Note:

A special problem that has been addressed, but not resolved is the lack of consensus in the numbering of the individual serotypes.

Epidemiology and Pathogenesis

- Ubiquitous in chickens: Demonstrated by serological and virological studies in sick and healthy birds.
- Horizontal Transmission: Related with Immunosuppression

Vertical transmission is very important in spread.

Infected chicks

- Approx. >3d-18-20 d
- Do not excrete until 2-4 wks of age or until maternal antibodies decline.

Massive interchange of strains

• Chicks from **different parent flocks (Breeds)**: concurrent infections of one bird with 2-3 serotypes

Layer replacement flock

• Virus excretion maximum at 5-9 wks.

Latency

- When all breeders seroconvert shedding stops-vertical transmission stops
- Re-excrete virus throughout life, and aggravated during stress.

Avian adenoviruses and the diseases associated

Respiratory, Intestinal

- Respiratory disease, diarrhoea
- Detrimental effects on FCR and arthritis

Reproductive - Egg drop syndrome

IBH (inclusion body hepatitis)

Hydropericardium syndrome

• Popularly called as 'Litchi heart disease' in broilers

Gizzard Erosion

Chick Embryo Lethal Orphan (CELO) virus

Quail bronchitis virus

Undefined aetiology

Egg-drop syndrome'76

First in laying birds, 1976 in Europe

Genus: ATadenovirus.

• High 'AT' content in the genome

Strains

• Several genotypes but only one serotype

Clinical signs

• Reduced egg production up to 40% for 4-10 wks; soft-shelled, thin-shelled, shell-less eggs

Histology

• Virus replication in the pouch shell gland

Inclusion body hepatitis

"The 3 days disease"

- First described in 1960's in USA
- 3d increase Mortality, 3d Plateau and 3d Drop in mortality.
- Mortality up to 30%.

Disease

- Meat producing birds between in 3-7 wks.
- Liver is primary organ affected.
- With Co-infection with CAV and IBDV, target organ is haemopoietic system.
- PM: liver is swollen, light brown to yellow with hemorrhages, marked anemia, icterus of skin, fat deposits and haemorrhages in various organs, pale inactive bone marrow

Serotypes associated with outbreaks of IBH

Common serotypes prevalent around

the World

• Serotype 2, 8b, 9, 11

Australia

• Serotype 6, 7 and 8 belonging to Group E

Newzealand

- Principally F8 and also F1 and F12 belonging to Group E
- In addition to liver lesions, atrophy of bursa and thymus, with aplastic bone marrow

Canada

• FAV-8 of Group E and FAV-11 of Group D

Europe

• FAV-2 of Group D

• FAV-4 of Group C, FAV-11 of Group D and FAV-8 of Group E

Associated with CAV in layers

Necrotising pancreatitis

Proventriculitis

Gizzard errosions and/or ulcerations

Hydropericardium syndrome

History

- A new syndrome in 1987 recognised at Angara Goth near Karachi in Pakistan.
- Subsequently recognised in India, Kuwait, Iraq, Mexico, Central and South America, Japan and Russia.

Disease

- Meat type birds between 3 -6wks, with mortality from 20-80%.
- Breeding and laying flocks with low mortality
- PM:
 - Enlarged pericardial sac, thickened and filled with straw colored fluid which is characteristic.
 - Liver is pale and enlarged and there is accumulation of fluid in the abdominal cavity.
 - Pulmonary edema, enlarged kidney
- Also associated with immunosuppression

Diagnostic methods

- Immunodiffusion test
- Electron microscopy
- Immunofluorescence technique
- Neutralization test
- Haemagglutination inhibition test
- ELISA
- Restriction enzyme analysis
- DNA in situ hybridization
- Polymerase chain reaction (PCR) and sequencing of the Hexon gene

VRDC, Serotype-4, Group C

FAV-4

Species C

VRDC, Serotype-II, Group D Reproduction of the disease

17768-FAdV-D-Hexon-Canada-2005 45870-FAdV-D-Hexon-Canada-2006 19219-EAdV-D-Hexon-Canada-2005 54595-FAdV-D-Hexon-Canada-2003 54595-FAdV-D-Hexon-Canada-2006 2924-1-EAdV-D-Hexon-Canada-2005 3165-FAdV-D-Hexon-Canada-2005 40432-LI-FAdV-D-Hexon-Canada-2005 53357-71-EAdV-D-Hexon-Canada-2004 5613012d Pull-FAdV-D-Hexon-Canada-2004 23825-1-FAdV-D-Hexon-Canada-2006 41265-05-FAdV-D-Hexon-Canada-2006 1-CT-FAdV-D-Hexon-Canada-2005 CT-FAdV-D-Hexon-Canada-2005 K1012-EadV-11-Hexon-S Korea-2008 25854-1-FAdV-D-Hexon-Canada-2006 51178-FAdV-D-Hexon-Canada-2004 55093-FAdV-D-Hexon-Canada-2004 55751-FAdV-D-Hexon-Canada-2006 48765-FAdV-D-Hexon-Canada-2004 53906-FAdV-D-Hexon-Canada-2003 4889-FAdV-D-Hexon-Poland-2009 22394-FAdV-D-Hexon-Canada-2004 52448-FAdV-D-Hexon-Canada-2004 60057-903-EAdV-D-Hexon-Canada-2004 58730-FAdV-D-Hexon-Canada-2006 42884-1-FAdV-E-Hexon-Canada-2006 K09-21-FadV-11-Hexon-S.Korea-2009 3382-1H-FAdV-D-Hexon-Canada-2006 10890-FAdV-D-Hexon-Germany-2008 FAV-11 60057-928-FAdV-D-Hexon-Canada-2004 55907-FAdV-D-Hexon-Canada-2003 30487-FAdV-D-Hexon-Canada-2006 60560-EAdV-D-Hexon-Canada-2004 40372-FAdV-D-Hexon-Canada-2004 VRDC-309-SU-SZ-FAdV-11-Inact-G23-2013 VRDC-308-SULSZ-FAdV-11-Seed-G23-2013 VRDC-JA-AditiPF-WZ-FAdV-11-2016 VRDC-JA-WZ-FAdV-11-2016 HR4-EAdV-Hr4-Hexon-India-2006 VRDC-JA-WZ-DeshPF-FAdV-11-2016 VRDC-JA-WZ-DPF-FAdV-11-2016 VRDC-192-SU-Ven-SZ-FAdV-11-2013 VRDC-189-SU-Deksha-SZ-FAdV-11-2013 VRDC-190-SU-Chennak-SZ-FAdV-11-2013 VRDC-193-SU-Tataral-SZ-EAdV-11 ABT-AD-09-HARYANA-07-FAdV-12-hexon-Indi ABT-AD-83-HARYANA-07-FAdV-12-hexon-Indi IVRI-617-AD-FadV-4-India-2002 ABT-AD-73-HARYANA-07-FAdV-12-hexon-indi ABT-AD-27-HARYANA-07-FAdV-12-hexon-Indi 7498-EAdV-D-Hexon-Austria-2009 18085-FAdV-D-Hexon-Poland-2008 USP-01-FAdV-11-hexon-Brazil-2006 52482-FAdV-D-Hexon-Canada-2004 RostovD2-FAdV-D-Russia-2007 380-FadV-12-Hexon-Belglum-2001 UE71-EAdV-11-hexon-Australia-2008 C2B-FadV-11-Hexon-Belglum-2003 SR48-FadV-2-Hexon-Australia-2008 8872-FAdV-D-Hexon-Germany-2008 NRB-FAdV-D-Hexon-L1-Iran-2011 7190-FAdV-D-hexon-Unitedkingdom-2009 8991-FAdV-D-Hexon-Hungary-2009 11-15941-FAdV-D-Hexon-Sweden-2012 GB1340-FadV-D-Hexon-Sweden-2011 441-FAdV-D-Hexon-Australia-2007 FAV-2 778-FAdV-D-Hexon-Australia-2006 30973-FAdV-D-Hexon-Canada-2004 57502-FAdV-D-Hexon-Canada-2004 685-EadV-2-Hexon-Belglum-2002 5765-FAdV-D-hexon-Italy-2007 USP-02-FAdV-11-hexon-Brazil-2007

Species D

Prevention and Control

Eradication

- Not possible, as widespread distribution of adenoviruses throughout the world.
- Some strains move between domestic and wild birds

Vaccines

• Developed after the outbreaks of IBH and HPS, with inactivated liver suspension with adjuvant.

Magic Bullet

- Scientific concept developed by a German Nobel laureate <u>Paul</u> <u>Ehrlich</u> in 1900
- An idea that it could be possible to kill specific <u>microbes</u> that cause diseases without harming the body itself.
- By further research, he realised that antibodies sometimes failed to kill microbes.
- Abandoned his first idea on magic bullet.

Vaccination of Breeders

- Australia and the US for FAdV8
- Asia (including India) and South America for FAV-4
- Canada and Europe: Autogenous vaccines, also followed in different parts of the world.

Cross Protection

- Primarily serotype specific, Birds can shed a serotype while having antibodies to another serotype
- Between Serotypes 3 & 4 belonging to Species C
- Between Serotype 2 & I I belonging to Species D

Progeny Protection

- Level of maternal antibodies, depends on vaccine and application schedule (single, twice)
- Serotypes challenged

Take Home Message

Ubiquitous with wide array manifestations as "Primary Pathogen"

Adenoviruses are involved in the "Disease Complexes"

"Vertical transmission"

Endemic strains vary by Region and Company

New strains may be introduced by "Spiking males"

FAV "Serotype 4, 8 and 11" are prevalent in India.

"Vaccination": Decrease virus shedding.

Thanks

